'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(f(a()))) -> c_0(f^#(g(f(a())))) , active^#(g(X)) -> c_1(g^#(active(X))) , g^#(mark(X)) -> c_2(g^#(X)) , proper^#(f(X)) -> c_3(f^#(proper(X))) , proper^#(a()) -> c_4() , proper^#(g(X)) -> c_5(g^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X)) , g^#(ok(X)) -> c_7(g^#(X)) , top^#(mark(X)) -> c_8(top^#(proper(X))) , top^#(ok(X)) -> c_9(top^#(active(X)))} The usable rules are: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} The estimated dependency graph contains the following edges: {active^#(g(X)) -> c_1(g^#(active(X)))} ==> {g^#(ok(X)) -> c_7(g^#(X))} {active^#(g(X)) -> c_1(g^#(active(X)))} ==> {g^#(mark(X)) -> c_2(g^#(X))} {g^#(mark(X)) -> c_2(g^#(X))} ==> {g^#(ok(X)) -> c_7(g^#(X))} {g^#(mark(X)) -> c_2(g^#(X))} ==> {g^#(mark(X)) -> c_2(g^#(X))} {proper^#(f(X)) -> c_3(f^#(proper(X)))} ==> {f^#(ok(X)) -> c_6(f^#(X))} {proper^#(g(X)) -> c_5(g^#(proper(X)))} ==> {g^#(ok(X)) -> c_7(g^#(X))} {proper^#(g(X)) -> c_5(g^#(proper(X)))} ==> {g^#(mark(X)) -> c_2(g^#(X))} {f^#(ok(X)) -> c_6(f^#(X))} ==> {f^#(ok(X)) -> c_6(f^#(X))} {g^#(ok(X)) -> c_7(g^#(X))} ==> {g^#(ok(X)) -> c_7(g^#(X))} {g^#(ok(X)) -> c_7(g^#(X))} ==> {g^#(mark(X)) -> c_2(g^#(X))} {top^#(mark(X)) -> c_8(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_9(top^#(active(X)))} {top^#(mark(X)) -> c_8(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_8(top^#(proper(X)))} {top^#(ok(X)) -> c_9(top^#(active(X)))} ==> {top^#(ok(X)) -> c_9(top^#(active(X)))} {top^#(ok(X)) -> c_9(top^#(active(X)))} ==> {top^#(mark(X)) -> c_8(top^#(proper(X)))} We consider the following path(s): 1) { top^#(mark(X)) -> c_8(top^#(proper(X))) , top^#(ok(X)) -> c_9(top^#(active(X)))} The usable rules for this path are the following: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , top^#(mark(X)) -> c_8(top^#(proper(X))) , top^#(ok(X)) -> c_9(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {top^#(ok(X)) -> c_9(top^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(ok(X)) -> c_9(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [2] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [9] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(a()) -> ok(a())} and weakly orienting the rules {top^#(ok(X)) -> c_9(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(a()) -> ok(a())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [5] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [3] c_8(x1) = [1] x1 + [4] c_9(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(f(a()))) -> mark(f(g(f(a()))))} and weakly orienting the rules { proper(a()) -> ok(a()) , top^#(ok(X)) -> c_9(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(f(a()))) -> mark(f(g(f(a()))))} Details: Interpretation Functions: active(x1) = [1] x1 + [3] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [2] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [6] c_8(x1) = [1] x1 + [0] c_9(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , top^#(mark(X)) -> c_8(top^#(proper(X)))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , proper(a()) -> ok(a()) , top^#(ok(X)) -> c_9(top^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , top^#(mark(X)) -> c_8(top^#(proper(X)))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , proper(a()) -> ok(a()) , top^#(ok(X)) -> c_9(top^#(active(X)))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { active_0(2) -> 4 , active_1(2) -> 9 , active_1(7) -> 11 , a_0() -> 2 , a_1() -> 7 , mark_0(2) -> 2 , proper_1(2) -> 6 , ok_0(2) -> 2 , ok_1(7) -> 6 , top^#_0(2) -> 1 , top^#_0(4) -> 3 , top^#_1(6) -> 5 , top^#_1(9) -> 8 , top^#_1(11) -> 10 , c_8_1(5) -> 1 , c_9_0(3) -> 1 , c_9_1(8) -> 1 , c_9_1(10) -> 5} 2) { active^#(g(X)) -> c_1(g^#(active(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} The usable rules for this path are the following: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , active^#(g(X)) -> c_1(g^#(active(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {g^#(mark(X)) -> c_2(g^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(mark(X)) -> c_2(g^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [4] g^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_7(g^#(X))} and weakly orienting the rules {g^#(mark(X)) -> c_2(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_7(g^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [8] g^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(g(X)) -> c_1(g^#(active(X)))} and weakly orienting the rules { g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(g(X)) -> c_1(g^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [3] g^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(f(a()))) -> mark(f(g(f(a()))))} and weakly orienting the rules { active^#(g(X)) -> c_1(g^#(active(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(f(a()))) -> mark(f(g(f(a()))))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [10] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active^#(g(X)) -> c_1(g^#(active(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active^#(g(X)) -> c_1(g^#(active(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(4) -> 9 , active^#_0(7) -> 9 , g^#_0(3) -> 13 , g^#_0(4) -> 13 , g^#_0(7) -> 13 , c_2_0(13) -> 13 , c_7_0(13) -> 13} 3) { proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X)) , g^#(mark(X)) -> c_2(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_7(g^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_7(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_5(g^#(proper(X)))} and weakly orienting the rules {g^#(ok(X)) -> c_7(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_5(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [4] c_2(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(mark(X)) -> c_2(g^#(X))} and weakly orienting the rules { proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(mark(X)) -> c_2(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [8] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [13] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(a()) -> ok(a())} and weakly orienting the rules { g^#(mark(X)) -> c_2(g^#(X)) , proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(a()) -> ok(a())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [15] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , g^#(mark(X)) -> c_2(g^#(X)) , proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , g^#(mark(X)) -> c_2(g^#(X)) , proper^#(g(X)) -> c_5(g^#(proper(X))) , g^#(ok(X)) -> c_7(g^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , g^#_0(3) -> 13 , g^#_0(4) -> 13 , g^#_0(7) -> 13 , c_2_0(13) -> 13 , proper^#_0(3) -> 15 , proper^#_0(4) -> 15 , proper^#_0(7) -> 15 , c_7_0(13) -> 13} 4) { proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_6(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_6(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [7] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} and weakly orienting the rules {f^#(ok(X)) -> c_6(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(a()) -> ok(a())} and weakly orienting the rules { proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(a()) -> ok(a())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [15] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [4] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(f(X)) -> c_3(f^#(proper(X))) , f^#(ok(X)) -> c_6(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , f^#_0(3) -> 11 , f^#_0(4) -> 11 , f^#_0(7) -> 11 , proper^#_0(3) -> 15 , proper^#_0(4) -> 15 , proper^#_0(7) -> 15 , c_6_0(11) -> 11} 5) {active^#(g(X)) -> c_1(g^#(active(X)))} The usable rules for this path are the following: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , active^#(g(X)) -> c_1(g^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(g(X)) -> c_1(g^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(g(X)) -> c_1(g^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] g^#(x1) = [1] x1 + [3] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(f(a()))) -> mark(f(g(f(a()))))} and weakly orienting the rules {active^#(g(X)) -> c_1(g^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(f(a()))) -> mark(f(g(f(a()))))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] g^#(x1) = [1] x1 + [3] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active^#(g(X)) -> c_1(g^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(g(X)) -> g(active(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(f(a()))) -> mark(f(g(f(a())))) , active^#(g(X)) -> c_1(g^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(4) -> 9 , active^#_0(7) -> 9 , g^#_0(3) -> 13 , g^#_0(4) -> 13 , g^#_0(7) -> 13} 6) {proper^#(f(X)) -> c_3(f^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(a()) -> ok(a())} and weakly orienting the rules {proper^#(f(X)) -> c_3(f^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(a()) -> ok(a())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [8] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [2] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(f(X)) -> c_3(f^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 2 , mark_0(2) -> 2 , ok_0(2) -> 2 , f^#_0(2) -> 1 , proper^#_0(2) -> 1} 7) {proper^#(g(X)) -> c_5(g^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , proper^#(g(X)) -> c_5(g^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_5(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_5(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper(a()) -> ok(a())} and weakly orienting the rules {proper^#(g(X)) -> c_5(g^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper(a()) -> ok(a())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] a() = [3] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [1] x1 + [7] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(g(X)) -> c_5(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { proper(a()) -> ok(a()) , proper^#(g(X)) -> c_5(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , g^#_0(3) -> 13 , g^#_0(4) -> 13 , g^#_0(7) -> 13 , proper^#_0(3) -> 15 , proper^#_0(4) -> 15 , proper^#_0(7) -> 15} 8) {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} The usable rules for this path are the following: { g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] a() = [2] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { g(mark(X)) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(f(f(a()))) -> c_0(f^#(g(f(a()))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { a_0() -> 3 , mark_0(3) -> 4 , mark_0(4) -> 4 , mark_0(7) -> 4 , ok_0(3) -> 7 , ok_0(4) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(4) -> 9 , active^#_0(7) -> 9 , f^#_0(3) -> 11 , f^#_0(4) -> 11 , f^#_0(7) -> 11} 9) {proper^#(a()) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] mark(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(a()) -> c_4()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(a()) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(a()) -> c_4()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] a() = [0] mark(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(a()) -> c_4()} Details: The given problem does not contain any strict rules